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Abstract. Accurate classification of blood cells plays a key role in im-
proving automated blood analysis for both medical and veterinary appli-
cations. This work presents a two-stage deep clustering method for clas-
sifying blood cells from high-dimensional signal data. In the first stage,
red blood cells (RBCs) and platelets (PLTs) are separated using a com-
bination of an improved autoencoder and the IDEC algorithm. The sec-
ond stage further classifies RBC subtypes, pure RBCs, reticulocytes, and
clumped RBCs, through a variational deep embedding (VaDE) approach.
Due to the lack of detailed cell-level labels, soft classification probabilities
are generated from sample-level data to approximate the true distribu-
tions. The aim is to contribute to the development of low-cost, automated
blood analysis systems suitable for veterinary and biomedical use. Initial
results indicate this method shows promise in effectively distinguishing
different blood cell populations, even with limited supervision.
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1 Introduction

From the smallest whisper of blood, microscopic analysis unveils a vast wealth
of cellular data, fundamentally reshaping our understanding of an organism’s
intricate dance between health and disease. This analysis plays an important
role in the detection of infections, the diagnosis of hematological disorders, and
in monitoring immune function, and guiding treatment.

Yet, the complexity of this data also poses ongoing challenges. Only through
expert interpretation and high-speed equipment that is accurate and sensitive
to abnormalities can its full value be achieved. Current technologies are often
insufficient when extrapolated from human diagnostics to other species. Blood
morphological difference among animals makes the development of traditional
rule-based models difficult without extensive pre-analysis, feature engineering, or
species-specific tuning. Such a challenge demands well-curated data and medical
expert validation, especially for uncommon or inconspicuous cell populations.
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Also, throughput capacity, variability, and multi-parameter integration are even
more critical in multi-veterinary practice. These barriers must be overcome along
the path of creating scalable, accurate, and medically significant diagnostic tech-
nology across species. By addressing these challenges, one can enhance diagnostic
understanding and clinical efficacy. We propose here a two-stage deep clustering
method for classifying blood cells from high-dimensional signal data.

2 Technical instrumentation

2.1 How a blood count instrument works

Hematology analyzers, i.e. blood count instruments, receive a sample of blood,
mixed with anticoagulant to separate possible clumps, and classify various cells
by analyzing their electrical, optical, or laser-based signal profiles. That is, Com-
plete Blood Counts (CBC). We relied on cytometry-based instrument, where a
laser beam is directed at cells as they flow in a single line through a small tube.
Multiple channels are used, each capturing different signal features (Figure [1).
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Fig. 1. Internal representation of how cells are identified

As each cell interacts with the laser, the detectors capture light scattered at
various angles and through different color filters: (i) Forward Scatter (FSC), to
determine the cell size and (ii) Side Scatter (SSC) to determine the opacity or
internal complexity of a cell. The resulting data are then plotted in the form of
time series of pulses, which provide visual representations of the composition and
characteristics of the cells. Data can include distinctions among different types of
blood cells, such as red blood cells, white blood cells, and platelets. The precision
of this data collection is crucial to obtain reliable counts and classifications of
blood components.
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2.2 Limitations of traditional blood count instruments

Current instruments rely on rule-based classification and traditional algorithms
and they often struggle when ambiguous or atypical samples, such as: (i) retic-
ulocytes (immature red blood cells), (ii) coincidences (red blood cell clumps or
aggregates), and (iii) platelets with abnormal morphology.

In addition, these instruments are calibrated for human blood. Given the
complexity of blood samples, particularly in the veterinary context, where pa-
tients come from different species, one anticoagulant can work differently for two
blood samples. Even if the initial goal is met, to get rid of cell clumps, external
factors (e.g. time) can interfere and can lead the algorithm inside the instrument
to produce ambiguous results when samples are given from other species.
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Fig. 2. Clusters of cells from human (top) vs. cat blood (bottom)

In Figure [2 the clusters from the human blood sample are much easier to
be spotted than the ones from a cat blood sample. The platelets, which are the
smallest ones, should be in a proportion of 5% and the rest are red blood cells
(the white cells are washed out before counting). The red blood cells fill the rest
of the plot, and can be in three categories: (1) regular mature red blood cells
(2) reticulocytes, young red blood cells created less than 24 hours ago, and (3)
coincidences, i.e. two or more red blood cells clustered together.
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Differently, the cat blood cells have a much higher chance to create doublets
or triplets, making it harder to count them. We can use general percentages as
weights for each category, but that can end up bad when there is a problem and
we do not see it. We need to have a precise count and classification of each cell.

2.3 What do we have available?

The instrument processes the blood sample by introducing a reagent that de-
coagulates the blood cells and filters out white blood cells (WBCs), allowing only
red cells (RBCs) and platelets (PLTs) to flow through the measurement tube.
Ideally, this leads to a clean separation of the cell types without any aggregates.
In practice, timing plays a critical role. Between the moment the reagent
is added and when the sample passes through the tube, a variable delay may
occur. During this interval, cells can begin to re-coagulate, forming aggregates or
clumps known as coincidences. These coincidences complicate the analysis since
they appear as merged signals that do not correspond to individual cells.
Off-the-shelf deep clustering algorithms could help in several ways: (i) giving
us values to use as a ground truth for each cell; (ii) fine-tuning a model to use for
instrument computation instead of the current algorithm; (iii) training a model
to find the percentage of reticulocytes which is helpful for diagnose anemia; (iv)
training a model to help us identify and classify blood cells for different animals
instead of using different algorithms which require a long time for optimization.

2.4 Model selection for predicting blood count

Based on the dataset consisting of 11 dimensions, two primary approaches for
selecting a suitable model are: (i) using pre-built models or (ii) constructing a
custom artificial neural network. The decision depends on the desired perfor-
mance or interpretability of the model.

Pre-Built Models for Tabular Data are broadly effective, but not not opti-
mally suited to our task. The complexity of bio signals and our goal of uncovering
subtle, unlabeled patterns in an evolving, unsupervised environment demand a
specialized approach. Accordingly, this study investigates deep clustering meth-
ods and custom neural architectures that address these requirements.

Custom Neural Networks provide a promising direction towards more flexi-
bility and the ability to dynamically learn required features from sophisticated
data such as those in our study. It is possible to customize these networks to the
particular complexities of the data, and this should provide deeper insight and
improved performance over the conventional techniques.

We experimented here with deep clustering and generative methods, which
are highly suitable for unsupervised and weakly supervised tasks, especially in
scenarios with limited labeled data, such as blood cell classification. The specific
approaches investigated include:

— N2D (Not Too Deep) Clustering [11]: This approach combines deep repre-
sentation learning (typically via an autoencoder) with subsequent manifold
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learning on the obtained embedding, followed by a traditional clustering
algorithm applied to the learned manifold.

— Vanilla Autoencoders (AE) |2]: Neural networks used to learn efficient di-
mensionality reduction by reconstructing their input. The learned latent
space can then be used for clustering.

— Variational Autoencoders (VAE) [8]: A generative extension of AEs that
learns a probabilistic latent space, useful for generating new data and for
clustering.

— DEC (Deep Embedded Clustering) [15]: A method that simultaneously learns
feature representations and cluster assignments using a deep neural network.

— IDEC (Improved DEC) [5]: An extension of DEC that incorporates an au-
toencoder reconstruction loss to preserve local structure in the data, improv-
ing clustering performance.

— VaDE (Variational Deep Embedding) [7]: A generative clustering approach
that models the data distribution with a Gaussian Mixture Model (GMM)
fitted over the latent space learned by a VAE.

Such models combine feature learning and clustering in an end-to-end manner,
and they are suitable for unsupervised or weakly supervised tasks like our blood
cell classification, where there are no per cell labels.

3 Method

A preliminary investigation with a basic Improved Deep Embedded Clustering
(IDEC) approach guided the creation of a more advanced, better fitted on our
case, two-stage deep learning methodology.

Current algorithm parameters, such as the number of clusters or latent di-
mensionality, were selected based on experimenting and observing their perfor-
mance and domain knowledge. While this approach had promising results, it
introduces subjectivity and may not work the same on different datasets. One
improvement comes from automated hyperparameter optimization. Techniques
such as Bayesian optimization, grid /random search, and evolutionary algorithms
can be used to systematically explore the configuration space and identify pa-
rameter combinations that yield better clustering performance, reconstruction
accuracy, and predictive stability. This could result in a more robust and gener-
alizable model, especially when adapting the pipeline to new data sources, blood
analyzers, or animal species.

3.1 Stage 1 - Latent representation and initial clustering

Stage 1 involves creating an autoencoder and training it to obtain a more dis-
criminative latent space representation of the input cell data, in the scope of
enhancing data separability. Various autoencoder architectures have been ex-
perimented on, including different numbers of layers, neuron counts per layer,
and activation functions.
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The latent representations from the encoder are passed to an Improved Deep
Embedded Clustering (IDEC) module, which simultaneously performs cluster-
ing and reconstruction. A regression head is also added to predict the relative
proportions of red blood cells (RBCs) and platelets (PLTs) in each sample, en-
couraging alignment between clusters and cell types. This stage forms the back-
bone of the pipeline by cleanly separating RBCs from PLTs in an unsupervised
yet biologically meaningful manner.

3.2 Stage 2 — RBC subclassification via VaDE

Stage 2 focuses exclusively on the RBCs identified in Stage 1. They are passed to
a Variational Deep Embedding (VaDE) algorithm, enabling a more specialized
and probabilistic RBC classification into three biologically distinct subtypes:
clumps, reticulocytes, and normal RBCs. This stage uses the power of variational
inference for uncertainty modeling and soft clustering, refining the overall system
granularity and accuracy.
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Fig. 3. System architecture

3.3 Data acquisition and preprocessing

Raw data is obtained from blood count instruments that record multiple charac-
teristics of cellular signals across different channels. Rather than capturing raw
waveform data, each detected event (e.g., an individual cell or cell cluster) is
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represented as a tabular feature vector. These vectors include derived features
such as peak values, area under the curve, and timing features for each channel.

Each sample in the dataset corresponds to a single blood measurement and
contains tens of thousands of such feature vectors. The dataset is structured so
that each CSV file contains signals from one biological sample, with features
extracted from multiple measurement channels.

The data for this research was created with the Aquarius instrument from
Diatron |4]. It is structured in multiple CSV files, where each file corresponds
to one individual blood sample. Each row in a file corresponds to one individual
laser-detectable event, and is characterized by 11 different features. These are
based on the five channels of the device: four of these channels, at varying angles
and with varying optical filters, measure peak signal and area. The fifth channel,
being oriented crosswise to the laser beam, having heightened sensitivity to cell
size, besides its peak and area values, yields an additional, temporal measure-
ment, for a total of 11 distinct features per event. Each event counted can reflect
an individual cell type, such as a red blood cell (RBC), a platelet (PLT), or
a reticulocyte, or it may reflect a coincidence event, in which a cluster of cells
(notably RBCs) is counted as a single event. The clumping may result if cells
re-aggregate over time following addition of an anticoagulant or if they did not
get separated on the first hand. The sample preparation involved mixing a spec-
ified volume of blood with a proprietary anticoagulant designed to optimize cell
separation, with each sample analyzed resulting in a mixture containing about
150000 cells, represented as signals in the CSV file produced, delivering full data
for analysis.

Preprocessing involved feature scaling and normalization, specifically using
standardization, to ensure numerical stability and consistency across samples,
which is an essential prerequisite for our deep learning approach. Observing a
high degree of intra-sample homogeneity, we adopted a strategy centered on pro-
cessing representative batches drawn from each CSV file. This approach operated
under the assumption that sufficiently large, random subsets would capture the
cell population distributions characteristic of the full sample, much like estimat-
ing the density of a forest from a well-chosen patch. Beyond this conceptual ratio-
nale, batch-wise processing also addressed practical challenges such as memory
constraints and computational efficiency, common limitations in deep cluster-
ing applications. Depending on the requirements of specific training phases or
models, data was either handled in these representative batches or processed as
complete per-file datasets to retain broader context when needed.

3.4 OQutput and visualization

The system outputs the number of cells for a specific sample, identifying popu-
lations such as red blood cells and platelets, enabling clinical interpretation and
quality control. Visualization tools generate scatter plots of latent embeddings
colored by cluster assignment, facilitating visual inspection of cluster quality and
detection of coincident events or artifacts.
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4 Running Experiments

4.1 Autoencoder architecture experiments

Stage 1 begins with learning a latent representation of blood cell data using
an autoencoder. Several architectures were evaluated by varying the number of
encoding layers, the number of neurons per layer and the activation functions.

Initially, a minimal design with only two linear layers was tested, directly
mapping the input features to the latent dimension. While simple, this model
showed limited capacity to extract hierarchical and abstract features from the
complex multi-channel blood cell data. To address this, an intermediate hidden
layer was added, resulting in a three-layer encoder:

Different sizes of the hidden layer were experimented with, typically rang-
ing from 64 to 512 neurons. Larger layer sizes offered increased model capacity
but risked overfitting, while smaller sizes improved generalization but reduced
representational power. The final chosen size balanced these trade-offs based on
clustering performance and reconstruction error.
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Fig. 4. Autoencoder architecture design

ReLU (Rectified Linear Unit) was chosen as the activation function between
layers because of its proven effectiveness in deep learning tasks |1]. ReLU in-
troduces non-linearity such that the network can learn complex patterns. It is
computationally cheap and avoids the vanishing gradient problem, thereby cut-
ting down training time and stabilizing it. In addition, sparse activation (gives
output zero for negative inputs) encourages the network to learn compact and
disentangled features, beneficial for clustering tasks like the segregation of PLTs
and RBCs.

4.2 IDEC training, batch strategy, hyperparameter tuning

Following autoencoder training, the latent representations were fed into the
IDEC algorithm, which performs joint clustering and reconstruction, with an
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added regression head to predict RBC and PLT ratios per blood sample. To pre-
serve sample integrity and reduce variability, mini-batching was applied within
individual CSV files, treating each as a separate blood given the homogeneity
of the data. To assess convergence stability and clustering performance, various
learning rates were tested during IDEC training. Specifically, learning rates of
1x1073, 1 x 1074, and 5 x 10~* were evaluated as can be seen in Figure
These values provided reasonably stable training dynamics and interpretable
cluster structures. Higher learning rates such as 1 x 1072 and 5 x 1072 were
also tested but led to highly unstable training, with frequent spikes in the loss
components and poor convergence. As a result, these configurations produced
unreliable clustering results and were excluded from the plots.
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Fig. 5. IDEC loss comparison

The clustering soft assignments are computed via the Student’s t-distribution:

|2 — .H2 "E%;l
(14 Lempml®)

s (14 L%—w/H?)*"T“
J’ a

Stable training and meaningful cluster separation were achieved when bal-
ancing losses appropriately as can be seen in the Figure [6] Regression head
improved alignment between clusters and actual cell type proportions.

Considering the huge number of cells in one sample and the average ratio
between them to be 95% RBC to 5% PLT, the RBC prediction got a very good
R? score of 0.998, meaning that the algorithm explains nearly all the variation
in the red blood cell counts, indicating excellent accuracy and reliability as can
be seen in Figure [7} This level of predictive accuracy not only testifies to the
quality of the deep learning approach but also to the application potential for
medical and veterinary clinical environments.

Qij =
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On the other hand the prediction of PLT is much more fragile. For example,
a misclassification of just a couple hundred cells, which might seem minuscule
looking at the total RBC count, can impact significantly the PLT count. In
some cases this error can even double the number of platelets. This happens
because the platelets are much less abundant overall, and the model has not
enough information to properly learn their configuration. Additionally, since the
model predicts the ratios jointly to sum to 1, the PLT and RBC ratios are
interdependent, meaning that an error in one of them is clearly an error in the
other as well. However, an average error in PLT ratio is insignificant to the RBC
ratio, while one in RBC ratio has huge impact for the resulting PLT count.

To address this, future work will focus on strategies for imbalanced learning:

— Focal Loss: A dynamic loss function that down-weights the majority class
examples and focuses learning on the minority class samples, which would
encourage the model to pay greater attention to PLT features.

— Class-Balanced Loss: This loss formulation re-weights training examples based
on the inverse frequency of each class, helping to counteract the imbalance
in sample distribution.

— Synthetic Oversampling: Techniques such as SMOTE (Synthetic Minority
Over-sampling Technique) [13] can be used to generate synthetic examples
of minority classes by interpolating between existing samples. This approach
can help balance class distributions and improve the ability to learn under-
represented patterns without significantly increasing the risk of overfitting.

Experimenting with these approaches could lead to more robust PLT predic-
tions, even in high-imbalance scenarios commonly encountered in hematological
datasets. Nonetheless, the very good RBC prediction provides a solid foundation
on which to proceed. Additionally, the classification of 109 CSV files (each con-
taining about 150k cells) was completed in approximately 60.6 seconds, demon-
strating that the deep learning pipeline is also efficient enough to handle large
datasets in a practical timeframe.

4.3 RBC subclassification with VaDE

Stage 2 uses the Variational Deep Embedding (VaDE) model to further subclas-
sify RBCs identified in Stage 1 into clumps, reticulocytes, and normal RBCs.
VaDE jointly trains a Variational Autoencoder and a Gaussian Mixture Model,
modeling the latent space as a mixture of Gaussian components instead of a sin-
gle Gaussian. This enables probabilistic clustering with uncertainty estimation.

As a clustering methodology note, the model performs unsupervised clus-
tering natively within the latent space without any outside validation. As can
be seen in the Figure |8 the plot illustrates: (1) Raw Latent Space Projection:
Points are encoded according to their actual latent coordinates from the VaDE
encoder; (2) No External Validation: No ground-truth labels or external cluster-
ing metrics were used. This decision was made due to the absence of reference
annotations and in order to preserve and observe the natural output without
interference.
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Fig. 8. Visualization of VaDE applied over the Latent Space

This setup was designed as an exploratory experiment to examine VaDE’s
capacity to learn meaningful structure from the data in an unsupervised man-
ner. The observed cluster separations arise solely from the learned Gaussian
mixture model within the latent space and reflect the internal representation
of the data distribution, without relying on predefined labels However, without
expert-annotated subtype labels, it remains challenging to objectively assess the
accuracy and biological relevance of the discovered clusters. To strengthen the
reliability of subtype assignments, future work will incorporate validation mech-
anisms, such as clinical reference comparisons or human-in-the-loop assessments,
to align the resulted unsupervised outputs with domain expertise.

Code availability. The source code is available Here. The demo application
can be accessed Herel These resources include the a video of the application
running and some important pieces of code.

5 Discussion and related work

The application of ML to hematological analysis is a growing field of study, driven
by the potential for enhanced diagnostics precision, throughput, and less reliance
on labor-intensive manual workflows. Supervised deep learning has proven to be
effective, particularly in the context of image-based analysis. For instance, re-
searchers have shown that it is possible to accurately classify human white blood
cells using stain-free imaging flow cytometry data, highlighting how these models
can learn meaningful features from complex cell morphology without relying on
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traditional staining methods [10]|. This achievement highlights a major trend: the
move towards automated systems that can extract clinically relevant information
directly from raw instrumental data. However, one significant bottleneck for su-
pervised learning is its requirement for big, painstakingly annotated datasets. In
many biomedical applications, like examining data from high-throughput blood
counters, it is often not feasible or very expensive to obtain precise, cell-by-
cell labels. This has instigated active interest in unsupervised learning methods,
which have the potential to detect intristic patterns in data without explicit la-
bels. One of the most promising paradigms among them is deep clustering, since
it combines the strength of deep neural networks in learning rich, hierarchical
features with the task of data clustering.

One of the early significant contributions in this area is Deep Embedded Clus-
tering (DEC), proposed by Xie et al. |[15]. The main novelty of DEC was to use
a ML method that learns a mapping from the data space to a low-dimensional
feature space and, at the same time, updates cluster assignments in that space.
This is achieved by adding a clustering specific loss function that encourages the
learned embeddings to form clusters around cluster centroids. Innovative as it is,
one potential pitfall of the original DEC formulation is that the clustering loss
can, during training, increasingly distort the learned feature space, undermining
the autoencoder’s ability to preserve the local structure of the data. To allevi-
ate this, Guo et al. introduced Improved Deep Embedding Clustering (IDEC), a
simple yet effective variant of DEC approach [5]. IDEC elegantly resolves the fea-
ture space distortion problem by incorporating the autoencoder’s reconstruction
loss into the total objective function, where the feature learning components are
trained jointly. In this manner, the representation in the latent space is ensured
to be faithful to the original data’s local structure while being simultaneously
optimized for cluster separability.

The first part of our study, which performs the initial, rough classification
of Red Blood Cells (RBCs) and Platelets (PLTs), is directly inspired by the
principles of the IDEC framework. For use cases requiring more than just dis-
criminative clustering, generative models offer a more sophisticated solution by
learning the actual data distribution itself. The Variational Autoencoder (VAE),
proposed by Kingma & Welling, is a building block of the modern generative
modeling [8]. The VAE is a learnable probabilistic mapping to a structured latent
space from which new data points can be sampled. Building on this generative
ability, Jiang et al. proposed Variational Deep Embedding (VaDE), a framework
where a Gaussian Mixture Model (GMM) is employed as a prior in the VAE’s
latent space |7]. In VaDE, the data generation process is posed as first select-
ing a cluster from the GMM parameters end-to-end, VaDE learns a powerful
generative model for each cluster. The second stage of our project, which aims
to perform a more granular sub-classification of the RBC population, uses the
VaDE approach for its ability to model complex, multi-modal distributions.

The practical relevance of this work is grounded in the technology of mod-
ern automated hematology analyzers, such as Aquarius series from Diatron [4].
These instruments generate a high-dimensional signal data that serves as the
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input for our algorithms. Our two-staged pipeline, which combines the discrim-
inative power of IDEC with the generative ability of VaDE, is an approach to
modeling this instrumental data in the low-resource scenario of sample-level ref-
erence counts. By recasting these high-level counts as soft probability targets, out
algorithm has a semi-supervised nature, demonstrating an effective framework
for applying state-of-the-art deep clustering techniques to real-world biomedical
data challenges.

While this study focused on custom deep clustering architectures, future work
will evaluate their performance relative to other hybrid or classical approaches
using public datasets. Additionally, it is important to assess the pipeline’s compu-
tational scalability and deployment feasibility for high-throughput lab settings.
This includes evaluating the performance across various hardware configurations,
as well as analyzing memory usage, and latency.

The current research examined a deep clustering algorithm for blood cell
analysis via a two-stage pipeline with IDEC and VaDE models. The first stage
utilized an IDEC-based model to detect red blood cells (RBCs) and platelets
(PLTs) from a mixture of cell data. Although the model was trained in an semi-
supervised manner (knowing only the number of cells per file), the integration
of a regression head allowed for the prediction of sample-level RBC/PLT ratios,
which helped guide the interpretation of clustering results. This method provided
a way to assign per-cell labels that better matched known proportions from
reference data.

A key observation during development was the importance of aligning model
outputs with expected biological ratios. While semi-unsupervised clustering may
often return arbitrary or non-symmetric groupings, post-processing with pre-
dicted ratios provided more interpretable and useful results. Using soft cluster
probabilities and ranking them in order of likelihood was a handy workaround
for having no ground truth cell-level annotations.

Stage two utilized a VaDE approach on the candidate set of cells verified as
RBCs in an attempt to further separate into subtypes, such as pure RBCs, retic-
ulocytes, and RBC clumps. The hierarchical architecture allowed the pipeline to
be selective enough to process only relevant cells for subsequent clustering.

Two limitations of this study are: First, the algorithms were trained and
tested on non-annotated cell-level data, which limits ultimate classification ac-
curacy assessment. While the current approach uses sample-level counts and soft
clustering, the addition of even partial cell-level labels, either manually anno-
tated or synthetically generated from a developed simulator, could substantially
improve model validation. Future work will concentrate on exploring ways of
obtaining and using such labels. Second, some design choices, such as the num-
ber of VaDE clusters or latent feature interpretation, remain somewhat heuristic
and would be an interesting topic of investigation.

Despite these limitations, the work highlights the potential for deep clustering
algorithms in biomedical applications. By blending representation learning with
soft, probabilistic assignments and post-processing, the pipeline demonstrated
that valuable conclusions can actually be learned from unlabeled data. With
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improving annotation quality and greater accessibility, this approach could be a
suitable scalable foundation for more advanced and accurate blood cell analysis
systems.

A future direction would be the integration of explainable artificial intelli-
gence (XAI) . In line with [3] and [6], explainability could be achieved through
methods such as feature attribution, latent space visualization or analysis of indi-
vidual sample influence on cluster formation. Additionally, methods like SHAP
(SHapley Additive exPlanations) [12] and LIME (Local Interpretable Model-
Agnostic Explanations) [9] could be explored to provide transparency in model
decisions. Visualizing contributions of each feature to latent representations or
clustering output would increase trust, while evaluation metrics for explainabil-
ity [14] can contribute the more effective human-in-the-loop systems.

As deep clustering methods continue to gain traction in biomedical data
analysis, it becomes essential to enhance transparency, scalability, and clinical
alignment. By addressing current limitations such as the lack of annotations,
class imbalance, and manually selected parameters, and by integrating inter-
pretability into the pipeline, future work aims to develop robust, efficient, and
clinically trustworthy blood analysis systems that can generalize across different
species and instruments.

6 Conclusion

This study presented a two-stage deep clustering pipeline aimed at detecting and
classifying types of blood cells using unsupervised and semi-supervised learning
methods. IDEC was used in the first stage to distinguish RBCs from platelets,
while VaDE was used in the second stage to explore potential RBC subtypes.

The use of a latent space obtained from training an autoencoder with re-
gression and clustering provided a generalizable framework for processing high-
dimensional, unlabeled biological data. Although the algorithms themselves were
based on relatively simple architectural components, they were able to produce
cell-level classifications, generally in agreement with sample-level reference val-
ues.

This is especially valuable in real biomedical datasets, where class imbalance
is common and often breaks standard models. The model’s strong RBC pre-
dictions, show its ability to generalize well. Just as important, processing over
100 large samples in about a minute highlights its practical efficiency. While
platelet predictions remain more sensitive due to their low representation, the
system is well-positioned to improve. By capturing meaningful features in this
latent space, the model can identify and quantify cell populations, even when it
is faced with high class imbalance.
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